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An improved semi-empirical self-consistent scheme is described for calculat- 
ing the band structures of three-dimensional solids. The basic level is that of 
CNDO theory. The non-orthogonality of the Bloch functions is recognised 
and allowance is made for all degrees of involvement of the overlap matrix. 
The calculation of the electron-repulsion integrals is formulated in a way 
suitable for solid-state problems. The method is tested on the standard 
systems; polyethylene, graphite, diamond, and hexagonal and cubic boron 
nitride. It is found that the valence band properties are satisfactorily 
reproduced. For optical spectra a configurational interaction scheme is 
required. 
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1. Introduction 

There  have been a number of extended-Hiickel-based band-structure cal- 
culations carried through on 3D solids [1-8]. These have yielded results which, in 
many important respects, appear to be quite reliable qualitatively. It is, however, 
desirable to carry through self-consistent field calculations of 3D solids so as to, 
perhaps, approach quantitative results more closely and to generate a better  
picture of bonding. Since no self-consistent field method can be more than an 
approximation to the many-body problem, one is faced with the question of which 
type of self-consistent field method is adequate and practical for calculation 
involving solids. The ab initio self-consistent field method for solids, which has 
been applied to linear polymers with reasonable success [9-16], seems desirable 
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but is completely impractical at present for real three-dimensional solids contain- 
ing large atoms and having low symmetry. Hence, one is compelled to fall back on 
semi-empirical self-consistent field methods�9 The augmented-plane-wave (APW) 
self-consistent method used by Neckel et al. [17-19] and the orthogonalised 
plane-wave method [30] have been shown to be useful for a number of binary 
materials and, as a complement to this, we have developed an improved semi- 
empirical method for solid-state calculations based on the tight-binding LCAO 

approach�9 Here the interpretation of calculated quantities poses little problem. 
Hence, we have extended and improved the LCAO CNDO SCF method [21, 22] 
as formulated for three-dimensional solids by McAloon and Perkins [23]. 

A number of CNDO SCF calculations for linear polymers, both carbon-only and 
containing heteroatoms, have already been reported in the literature. A 
representative sample may be found in Refs. [24-29]. From the results, broad 
valence- and narrow conduction bands are found, and this is due mainly to the 
neglect of differential overlap. However, in solids, orbital overlap plays an 
essential role in determining the crystal eigenvalues: this is particularly true for 
the 3D case, where high site-symmetry and coordination numbers are the rule. 
Moreover, because of the nature of the basis Bloch orbitals, the secular deter- 
minant has to be solved with the retention of off-diagonal elements of the overlap 
matrix. We therefore sought a method which, whilst retaining the basic simplicity 
exhibited by the CNDO method, would take account of overlap and which would 
predict reasonable valence and conduction-band properties. A recent publication 
by Harker and Larkins [30] sets out a method similar in many respects to the one 
we are proposing. They construct and solve the secular determinant for a Large 
Unit Cell (LUC) micro-crystal using periodic boundary conditions and the CNDO 
formalism�9 Results show their method to be effective and efficient for the systems 
studied. The main difference in approach is that, while they were concerned with 
the feasibility of LUC methods for solids, we are primarily interested in those 
modifications which need to be made to CNDO in order that it can be applied to 
solids with as much reliability as it can at present be applied to molecules. In this 
Paper we deal with the various problems which are encountered and the 
modifications made to the CNDO scheme, in order to develop a method which 
will produce physically reasonable results. Finally, we describe some of the 
test-band-structures for solids; obtained using this modified technique. 

2. Calculational Method 

In this section we discuss the problems encountered in extending the CNDO 
theory of molecules and the modifications made to it, for its application to solids�9 
We consider these under four heads: firstly, we discuss the problem of incorporat- 
ing into the calculation the non-orthogonal nature of the atomic orbitals; this is 
required for the calculation of physically realistic eigenvalue spectra of solids. 
Secondly, in sections (ii) and (iii) we describe the techniques used to approximate 
the terms involved in the calculation of the two-electron part of the Hamiltonian 

�9 �9 O n  

(i.e. the repulsion integrals and the density matrix elements Px~) for solids, under 
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the CNDO framework. Finally, we discuss a new parameter introduced to help 
calibrate the CNDO results against those obtained by ab initio calculations. 

2. I. Modification o f  the Zero-differential-overlap Scheme  

The major approximation in the CNDO theory results from the neglect of 
differential overlap in the construction of the secular determinant. This arises 
from the assumed orthogonal nature of the atomic orbitals in the CNDO theory. 
Since the overall sum of orbital overlaps accumulated in overlapping Bloch 
functions is usually high (because of the large number of neighbours of different 
rank), the ZDO approximation is a severe one and, hence, we need to develop a 
method where the non-orthogonal nature of atomic orbitals is, at least partially, 
recognised. In order to achieve this, we must modify the off-diagonal elements of 
the interaction matrix. This is most easily seen as follows: 

Consider a hydrogen molecule for which the Hamiltonian is H. In the usual 
notation 

S i j  = ( ~ i l t ~ j ) .  

Orthogonal (oao) and non-orthogonal (ao) basis sets give rise to the molecular 
orbital energies, ebondlng and eantibonding 

Hll  + H12 
eb(oao) = H H  + H12, e b(ao) -- 1 + 8 1 2  

Hll  -H12 
e a(oao) = H l l -  Ha2, e a(ao) - -  1 - -  8 1 2  

It is easily shown that application of a constant potential field V will raise the 
one-electron energy levels of the system by V units of energy. This will apply 
equally to both orthogonal and non-orthogonal bases but, in order to achieve the 
result in the latter case, we need to modify the secular determinant thus, 

I H l l +  V - E  /-/21+ V$21 -ES211 =0  
H12 + V S 1 2  - -  ESl2 H22 + V -  E I 

so that the external applied field only raises or lowers but does not further separate 
the one-electron energies of the system. 

Under the CNDO approximations, as reformulated by Armstrong, Perkins, and 
Stewart [31], the diagonal and off-diagonal matrix elements of the Hartree-Fock 
Hamiltonian are given by Eqs. (2.1) and (2.3) as, 

o" 

F,,~ = - A S ~  ( I ~ I ~ )  1/2 _ �89 

(2.1) 

(2.2) 
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Eq. (2.1) can be rewritten as, 
1 f F~a = - I ax  + (1 - ~Paa)YAA + MAx (2.3) 

where 

--Po-,,-)YAB (2.4) 

represents the constant potential-energy term arising from elements of the 
Hartree-Fock Hamiltonian as expressed in Eqs. (2.1) and (2.2) and will show the 
correct effect of the potential-energy term M~,x on the molecular-orbital energy 
levels of the system for the orthogonal basis set. However, for this to be true in the 
non-orthogonal basis set, the off-diagonal matrix elements of the Hartree-Fock 
Hamiltonian of Eq. (2.2) must be modified as follows, 

1 / 2  1 1 t p Fa,,- = -ASxo.(Ia~,Io-o.) -~Pao, yAB+~Sx,~(Mxa +M,,o-). (2.5) 

Hence, replacing (2.2) by (2.5) for Fa~ allows the solution of the secular deter- 
minant [H -ES I = 0 with the retention of the off-diagonal elements of the overlap 
matrix. 

2.2. Construction of the y-repulsion integral 

The matrix elements arising from the two-electron part of the Hartree-Fock 
Hamiltonian under the CNDO approximations are evaluated using ydntegrals. 
For example, the term M[a in Eq. (2.4) has the following form when applied to 
periodic solids, 

N / 2  
r (pO0 p O O g  ~ On M , ,  =Y~ . . . .  - . . . .  ~'. ya~ (2.6) 

�9 tr n = - - ( N / 2 )  

r ~ 0 0 g  x 00  Mix = • (p0O_rxx) yxa +Max (2.7) 
a~A 

where the 1st term in Eq. (2.7) represents the change in the one-electron energy 
levels of atom A due to the presence of the charge on Atom A, and the second 
term, Max, is the Madelung potential energy experienced by an atomic orbital ~ba 
centred on atom A situated in the central unit cell of the lattice. However, the 
nature of a solid requires a large number of y-integrals to be calculated for Max. 
The correct evaluation of these integrals is, therefore, of some importance. The 
standard techniques [32] for evaluating y-integrals give reasonable results for 
small molecules but when applied to solids can give rise to very significant errors. 
In order to overcome this difficulty we have developed the following method for 
the evaluation of y-integrals which, whilst retaining simplicity, produces the 
correct behaviour of the Madelung potential-energy term for solids. 

The electrostatic repulsion energy ya~ between the electrons in the atomic orbitals 
~bx and d~,~ is 

F12  
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We seek an approximate method for calculating ,yx~ which avoids numerical 
integration but, at the same time, will produce physically realistic results. We 
proceed by first making the following two assumptions: 

a. The atomic orbitals can be represented by spheres within which the electron 
density is uniform and outside which the electron density is zero. 

b. The diameter, dA, in /~, of such a sphere can be approximated by using the 
electrostatic Coulomb repulsion as, 

14.397 
dA ----- - -  (2.9) 

Y~x 

For any two atomic orbitals ~ba and ~b~, .yx~ can be calculated in the following way. 

Let RA and RB be the radii of the spheres representing two atomic orbitals, ~bA and 
~b~, whose centres are separated by a distance Ra2. Then Rc, RD, the radii of the 
point charge spheres, as shown in Fig. 1, are given by 

Rc = R12- RA (2.10) 

RD = Rlz - RB. (2.11) 

The electron density within the sphere of radius Rc experiences a repulsion due to 
a point charge at a distance Rle. Similarly, the electron density within the sphere 
of radius RD is repelled by the electron density of ~ba acting as a point charge at a 
distance R12. This contributes a term ,1/1 to the overall y-integral, given by 

(Rc 3• C :(RD]3• C 
3'1 = \R-AA,/ Ra2 \R-BB] R12 (2.12) 

depending upon which centre we base our derivation. 
Let us use the centre of ~ba, then 

= (Rc '~  3 C 

"I/1 \ -RAA ] • R12 

where C = 14.397. 

R12 

Fig. 1. Geometrical construction for repulsion integrals 
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The next term, y2, is the repulsion of the shell (RA--Rc) by the core of &~, 
equivalent to the sphere of radius RD. This can be approximated as, 

Y2= { 1_ (Rc]3I(RD]3 C 
\RAA/ I\RBB/ XR1---~ (2.13) 

/(Ro~ 3 (RcRD]a/ C (2.14) 
- R-Tffb / • 

The third remaining term, y3, is the repulsion of the shell (RA-- Rc) by (RB - RD). 
This can be approximated by an expression similar to Mataga's [32], i.e. 

�9 C 2 2.-*/2. .  [Rc]3~(1 RD 3 

where y< is the lesser of the two y-values. 

Finally, the full y-integral arising from the repulsion between two electrons in the 
atomic orbitals &x and ~b~ separated by a distance R12 is given by the sum of these 
three terms as, 

= / ( R c ]  3 (RD] 3 (RDRc]a lx  C 

Yx= t \RAA} +\R'-BB/ -\R----~B/ / al---~ 

+(C2+R22/-1/2X{[1 (Rq' l l  1 RD' 
\ y<  / --\RAA' _IL-(R--s ]}" (2.16) 

For limiting values of R12, the above equation has the following values, 

R12=0; Rc=0;  R D = 0 ;  yx~r = y <  

C 
R12 > RA+ RB; Rc = RA; RD = RB; Yx~ = R12 (2.17) 

RA+RB>R12>RA; 
C 

Y< < Yx,~ < R12 

which are in line with physical intuition. 

Evaluation of y ~  using Eq. (2.17) affords the correct behaviour of the Madelung 
term in ionic solids. Hence, in all our calculations we have used this new technique 
for evaluating the y-integrals. 

2.3. Construction of the Density Matrix P for Crystals 

The density and bond-order matrix P for solids is constructed from the set of 
molecular-orbital coefficients Cxj(k) as described in Eq. (2.16), viz. the elements 
are, 

pO~ = Oi y ~ C*i(k)C~j(k) exp (ik. Rn) (2.18) 
IK all/" 

oct  
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For the correct behaviour 0n of Px~, the sum over k should be carried out over the 
first Brillouin zone of the system in a continuous fashion. This can be achieved by 
constructing a commensurate mesh of k-points in the first Brillouin zone, which 
then can be taken for the sum over k-points in Eq. (2.16). This technique, 
although simplifying the problem to some extent, does not reduce it: one still has 
to construct and diagonalise the secular determinants for each value of k in order 
to obtain the coefficients, C,p(k). We simplify this massive problem through the 
crystal symmetry. 

Now, all the distinct crystal orbitals can be obtained by diagonalising secular 
determinants each corresponding to a value of the wave vector lying within or on 
the surface of the representation domain of the Brillouin zone. Moreover, the 
wave vector k out of which the star is generated can always be chosen to lie on or 
within the surface of this representation domain. 

We therefore exploit the symmetry properties of the wave vector and the space 
group operations {.~ ]o3~} of the crystal to obtain the density matrix for the crystal. 
The procedure used is illustrated in the flow diagram shown in Fig. 2. This 
procedure reduces to an irreducible minimum the number of constructions and 
diagonalisations of the secular determinants required for a given number of 
k-points, i.e., to the number of k-points lying in the representation domain. 
However, in order to obtain the correct size of mesh of k-points required for the 
final density matrix P of the crystal, we use the following property of the matrix. 

Given an orthonormal set of non-back-transformed eigenvectors, the density 
matrix P constructed using these coefficients is duodem-potent,  i.e. 

p2 = 2P. (2.19) 

As the eigenvectors of a crystal are orthonormal, we have, 

N/2 
2 P  ~176 2 o. = Z {Px,~} �9 (2.20) 

n = - - N / 2  tr 

Eq. (2.19) is satisfied only when the k-points used in Eq. (2.18) are equal in 
number to N, the number of unit cells considered in the lattice, and their positions 
in reciprocal space are determined in a definite way by the unit-cell positions in 
real space. We introduce an error function PE to monitor the correct mesh type 
and size required for the construction of the density matrix, P which satisfies the 
space-group symmetry of the lattice as follows: 

N/2  

ee(,~) = 2 P ~ 1 7 6  Z Z{P~ 2 (2.21) 
n - - N / 2  o" 

and 

PE = ~ P,(h). (2.22) 
a = l  

For a correct mesh the function PE will vanish. In practice we observe the 
behaviour of Pz whilst varying the mesh size and type until PE is acceptably close 
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Obtain the molecular orbitals Z/Jj(k)~s for a f c . , _ _ ~  

~ rm;r e    'tetiTS"do%W2; 

Take the next wave vector k and the a s s o c i a - J  no ~.,, , ,~th w a t s w ~ - , . ~  
ted m as  ~ , ( k ) s  ~ 

/ 

Operate on k by the next operation of the isogo- / 
hal point group Fof G to obtain k--=R~,k. 

mem = <~ operation . , ~  
^ . c no ~ ye.' 

Operate on l p j ( k ) s  by the associated{R~/~r 
to obtain y~(k_') 

Construct the density matrix for k_. by use of equa- 
tion 2.18 

no yes 

Fig. 2. Flow diagram for construction of the density matrix 

to zero. This provides us with a method for determining an adequate crystal 
density matrix for the self-consistent-field calculations. 

2.4. Modification of the Overlap Matrix 

The complex nature of the energy bands and associated properties of crystals puts 
very considerable stress on any method used for their calculation. This is parti- 
cularly striking when one considers the large number of "types" of solids which 
one is trying, calculationally, to describe. As aforementioned, however, for a 
limited class of materials, the simple linear carbon-based polymers, calculations of 
varying complexity have been carried through, including ab initio methods [9-16, 
24-30]. These latter have been ettected with Gaussian-based orbitals essentially 
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equivalent to the basis sets currently popular and successful in quantum chemical 
calculations for molecules. It seems at present that this type of approach is the best 
that can be achieved, the calculations being generally consistent one to the other 
(which is not always true of experimental results). Hence, in choosing a touchstone 
against which to measure and match the semi-empirical approach, we have chosen 
these ab initio results. 

Previous semi-empirical calculations on polymers have assumed zero differential 
overlap. Here  we have formulated the theory without this condition. We can, 
however, investigate the intermediate situations lying between the two extremes 
by inclusion of an overlap weighting parameter  a. Hence, a is used to modify 
elements of the overlap matrix $ required for the construction of the secular 
determinant. Thus, we have 

[F~ - e,S~,,[ = 0 (2.23) 

where 

S'x~ = Sa=(6x# + a (1 - 6a~)). (2.24) 

The extreme values of this a parameter  have already been used in the con- 
struction of the secular determinant of equation (i.e. oe = 1 in the ab initio and 
a = 0 in the CNDO methods). We find (vide infra) that it allows us to parametrise 
band structures satisfactorily close to those obtained by the ab initio methods. We 
further describe this parametrisation procedure in Sect. 3. 

2.5. Matrix Elements of  the Hamiltonian and the Overlap Matrices under the 
Modified C N D O  Theory of Solids 

The matrix elements of the Hamiltonian and the overlap matrices, using the above 
proposed modifications to the CNDO theory, are, 

F A ~ ( k ) = - I x x + ( 1  l n O O \  O0 t - ~rxx)yxx +Max 

N/2 
l n 0 n  On ~tOn ~l~t ] 

- -  E COS k �9 R n [ A l x x S ~  + ~ r • 2 1 5  - o x x  1-,  xxJ ( 2 . 2 5 )  
n = - N / 2  

N/2 
Fa~(k) Y~ exp (ik ~? ~[Ak~ {/-. r ~ - ,=  , . v .  , , , , v v , O n  1/2 

n = - N / 2  

N/2 
~no~ 0nl 1 e~ + M ' ~ ) e x p ( i k . R , )  (2.26) + ~/"Xo-'yxo, J + ~ ~ ,., xo- t~v~ xx 

n =--N/2 
where 

N/2 
t (pO0 p o o g ]  On Mxx = Y. , - - , ~ -  . . . .  ~ "/x~ 

o- n = - N / 2  

N/2 

S i x ( k )  = 1 + ~ oL c o s  ( k  �9 e n ) S ~  
n =--N/2 

N/2 
S~,~(k)' = ~ c~exp (ik . R.)S~,.~ 

n =--N/2 
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The secular determinants have the form, 

IF~(k ) - ei(k )S '~(k  ) t = O. 

3. Results and Discussion 

In this section we describe the calibration and testband structures for some simple 
solids found using the present method. This serves, firstly, as an investigation into 
the capability of the method to calculate the complex energy bands in solids and, 
secondly, to give us some insight into the behaviour of the Mulliken-Wolfsberg- 
Helmholtz and the overlap parameters,  A and a, respectively. Finally, the 
calculations provide a test of the error function, PE, used to monitor the adequacy 
of the density matrix required for the self-consistent calculations of solids. 

3.1. Polyethylene 

A good starting example is that of polyethylene, for which ab initio band 
structures exist. We parametrised the present semi-empirical band structure of 
polyethylene against the most recent ab initio results of Armstrong et al. [15]. The 
material is t reated as a one-dimensional linear polymer with lattice parameter  
a = 2.51688 ~ .  We took into account the interactions between seven unit cells of 
the polymer (i.e. up to sixth-nearest neighbours). 

The orbital exponents and the valence-state ionisation potentials used are given in 
Table 1. The valence orbital ionisation potentials used in this work were abstrac- 
ted from the work of Levison and Perkins [5 3], who calculated these from spectral 
data. Burn's Rules were employed for the calculation of most of the orbital 
exponents used in this work except for C, B, and N, where the orbital exponents 
used were as for the ab initio work of Armstrong et al. [15]. The one-centre 
two-electron repulsion integrals, ~AA, used in this work were calculated using the 
Eq. (2.16). The effect of the mesh size and the variable parameters,  MW H  
constant A and the overlap parameter,  o~, was studied as follows: 

3.2. Variation in Commensurate Mesh Size 

As described in Sect. 2, we use the error function PE to find the mesh of k-points 
which gives an adequate density matrix required for the self-consistent cal- 

Table 1. Atomic input data 

Valence orbital Two-electron 
ionisation one -centre 

Orbital exponent potential Ix~ (eV) integrals 
s p s p "rAA(eV) 

H 1.0 --  13.06 --  12.84 
B 1.288 1.21 14.05 8.30 12.84 
C 1.608 1 .568  19.44 10.67 10.01 
N 1.923 1 . 9 1 7  25.58 13.19 14.81 
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Table 2. Relation between PE and the 
mesh sizes for polyethylene No. of k-points 

in range 
0 - 7r/a PE 

1 -287 .9  
2 -126 .4  
3 -40 .3  
4 -10 .2  
5 10 -4 
6 10 -6 
7 10 -6 

12 10 -6 

culation. The one-dimensional first Brillouin zone for polyethylene has range 

8(F)  < k < • E(X). 
a 

The correct density matrix P is obtained by summing over the wave vectors in Eq. 
(2.18) extending over the entire Brillouin zone. However,  we can exploit the 
time-reversal symmetry of Brillouin zones in order  to cut down the number of 
constructions and diagonalisations of the secular determinants. This is because 
r and r give rise to equivalent density matrices and so we can use the wave 
vectors lying in half of the first Brillouin zone to construct the density matrix for 
the system. Thus, in one-dimensional periodic solids, we can use the wave vectors 
lying in the range ( 0 - ~ ' / a )  to construct the density matrix. 

Table 2 shows the relationship between PE and the mesh sizes used for test 
calculations of polyethylene with MWH constant A = 1.4 and overlap parameter  

= 0.80 (vide infra). Examination of Table 2 reveals that six equidistant k-points 
in the reduced part of the first Brillouin zone affords a good density matrix for 
polyethylene. 

3.3. Variation of the M W H  Constant, A ,  and the Overlap Parameter, a 

Fig: 3 shows the effect of varying A and a on the band structure of polyethylene 
calculated using six points in the irreducible part of the Brillouin zone. Examina- 
tion of Fig. 3 reveals the following two generalisations, firstly, the band gap and 
the band width increase with increasing value of A and, secondly, the band gap 
decreases and the band width increases with decreasing value of a. 

Values of 1.4 and 0.60 for the MWH constant A and the overlap parameter  a, 
respectively, produce a band structure visually closest to the ab initio results. 

Finally, Fig. 4 shows the self-consistent band structure of polyethylene calculated 
using the above-obtained values of 1.4 and 0.60 for A and a, respectively, 
superimposed on the ab initio results of Armstrong et al. [15]. The calculated 
ionisation potential of 9.07 eV is in acceptable agreement with the ab initio result 
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of 10.7 eV (expt. 8.5 eV [33]), whilst the computed charges of C -0"24 and H +0"12 

are comparable with the ab initio values of C -~ and H +~ 

3.4. Two-dimensional Graphite 

Next, we describe self-consistent band-structure calculations for two-dimensional 
graphite using the above-obtained values of A and a. In the two-dimensional 
graphite structure, there are two atoms per unit cell. The primitive translation 
vectors are ta = tb = 2 .45085 /~ ,  optimised by Dovesi  etal. [34]. The first Brillouin 
zone is a hexagon and is shown in Fig. 5 along with the notation of Lomer [35] for 
the symmetry points. 
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Fig. 4. SCF band structure of poly- 
ethylene superimposed on ab initio 
results (Ref. 15) 
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Unit cells lying within the circle of radius 8/~ were considered as interacting with 
the central unit ceil. The representation domain ~ and the basic domain fl both 
have volumes equal to one-twelfth that of the first Brillouin zone. The different 
commensurate meshes are shown in Fig. 6, with the k-points lying in the basic 
domain, and Tables 3-5 give their positions in terms of (bl, b2), the vectors of the 
reciprocal space. 

Table 6 gives the total number of k-points generated in the Brillouin zone using 
these meshes in the basic domain fL Finally, Table 7 shows the relationship 
between the error function, PE, and the mesh sizes. The band structure of graphite 
does not show any variation on increasing the number of sampling points in the 
basic domain from 19 to 25. This implies that mesh 4 gives a good density matrix. 

Fig. 7 shows the self-consistent band structure for graphite, calculated using 25 
sampling points in the basic domain l~. Table 8 shows the various features of the 
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/-, 

p 

~Q 

Fig. 5. Brillouin zone for 2D graphite 

valence band as obtained in the present work, along with the results of first- 
principle calculations of Painter and Ellis [36] and those of Corbato [37]. Our 
calculated value of the total valence-band width of 29.0 eV is also in line with the 
recent experimental value of 24.1 eV obtained by McFeely et al. [38]. 

The Fermi level calculated in the present work at - 4.52 eV is in good accord with 
the experimental value of -4 .60 eV also determined by McFeely [38]. We would 
expect that the results of our calculations would be improved with respect to the 
experimental values if the calculations brought in the third dimension of graphite. 
This is because the third dimension of the crystal splits the degeneracy at the P 
point and both the Fermi level and the total band width are lowered. It should be 

Position 
k-point bl b2 

1 0 0 
2 6a 0 
3 4a 2a 
4 8a 4a 

Table 3. Positions of k-points in 1) 
corresponding to Mesh 1 (Fig. 5) 

Table 4. Positions of k-points in f~ corresponding to Mesh 2 (Fig. 5) 

Position Position 
k-point bi b2 k-point bl b2 

5 5a a 
1 0 0 6 4a 2a 
2 3a 0 7 7a 2a 
3 6a 0 8 6a 3a 
4 2a 0 9 8a 4a 
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Table 5. k -poin t  positions in f t  corresponding to meshes  3 and 4 
(Fig. 5) 

Mesh 3(a = ball2 = b2/12) Mesh 4 (c = bl/24 = b2/24) 
Position Position 

k-point  bl b2 k-poin t  bx bz 

1 0 0 1 0 0 
2 a 0 2 3c 0 
3 2a  0 3 6c 0 
4 3a  0 4 9c 0 
5 4a  0 5 12c 0 
6 5a 0 6 2c c 
7 6a  0 7 5c c 
8 2a  a 8 8c c 
8 3a a 9 11c c 

10 4a  a 10 4c 2c 
11 5a a 11 7c 2c 
12 6a  a 12 10c 2c 
12 4a  2a  13 13c 2c 
14 5a  2a  14 6c 3c 
15 6a  2a  15 9c 3c 
16 6a  2a  16 12c 3c 
17 6a  3a  17 8c 4c 
18 7a  3a  18 l l c  4c 
19 8a  4a  19 14c 4c 

20 10c 5c 
21 13c 5c 
22 12c 6c 
23 15c 6c 
24 14c 7c 
25 16c 8c 

15 

pointed out here that our calculation is in no way adjusted to fit the band structure 
of graphite but involves only a transfer of two parameters  from polyethylene. 
Moreover ,  the results obtained are a significant improvement  over the con- 
ventional C N D O  results of Dovesi  et al. [34], where the valence band width 

Table 6. Relation between the number  of k-points  in 
~q and the number  of generated k-points  in the 
F.B.Z. of graphite 

No. of k-points  Total no. of k- 
Mesh in I) points in B.Z. 

1 4 12 
2 9 48 
3 19 144 
4 25 192 

Table 7. Relat ion between mesh  sizes and PE 

Mesh  Mesh 1 Mesh 2 Mesh 3 Mesh 4 

PE -- 142.24 0.08 10 -4 10 -6 
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r o r o 

MESH 1 MESH 2 

F O F O 

MESH 3 MESH4 

Fig. 6. Commensurate meshes for the 2D-hexagonal lattice (in the representation zone) 

obtained is three times the experimental value. The charge distribution within the 
valence orbitals corresponds essentially to the "sp 2'' configuration usually quoted 
for trigonal carbon atoms in planar organic compounds. 

3.5. Two-dimensional Boron Nitride 

Hexagonal boron nitride is isoelectronic with graphite and a two-dimensional 
sheet has a primitive unit cell containing one atom of boron and one atom of 
nitrogen. We took the unit cell to have B-N bond length 1.45 A as observed in the 

Table 8. Partial valence band widths (W,, and W<,), the total 
valence band width (Wtot), and tr-lr band overlap (A~) obtained 
from various calculations. Energy given in eV 

Property Present work Painter and Ellis* Corbatot 

W o 12.6 8.0 9.8 
W,~ 23.4 16.0 16.6 
Wto t 29.0 20.8 18.5 
A,~.,, 8.0 3.0 6.0 

*Ref. [36] tRef. [37] 

Table 9. The total valence band width (Wtot) and the band gap obtained from the 
various calculations. Energy in eV 

Property Present work Zunger*et al. Zupan** Nakhmansont 

Wtot 22.75 17.3 16.0 27.8 
Band gap 9.1 5.1 4.9 3.6 

* Ref. [40] ** Ref. [54] t Ref. [55] 
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three-dimensional hexagonal structure [39]. Unit cells lying within the sphere of 
radius 8/~ were allowed to interact with the central unit cell. The valence-state 
ionisation potentials and orbital exponents used in the calculation are given in 
Table 1. We have used the values of the variable parameters, A and a, as obtained 
from the results of the polyethylene calculation. The similar hexagonal structure 
of graphite and boron nitride allow us to use mesh 4 as used in the former case. 
The corresponding value of the errror function, PE, is -- 10 -5. 

Fig. 8 shows the self-consistent band structure of two-dimensional boron 
nitride, obtained using the above-described parameters. Table 9 lists the valence 
band widths and the lowest inter-band transition as obtained in the present work, 
along with the results of previous calculations. 

The present value of the total valence band width (22.7 eV) is compatible with 
results of X-ray spectra, which indicate a total valence band width of about 
18.6 eV. The present value of the band gap at 9.1 eV is larger than the observed 
optical-absorption edge at 5.8 eV [40]. In a covalent and fairly localised system 
like a B-N compound, we expect that the experimental optical absorption will not 
correlate directly with the band gap as it would in a strongly delocalised system. 
Thus, it is significant that the corresponding eigenvalue difference in borazine 
amounts to 14.6 eV [41] whereas, after correction by configuration interaction, 
several states are found, falling in the region 6.6 to 7.5 eV, in good agreement with 
the observed electronic spectrum [42]. Thus, we expect that the many-electron 
effects are quite important in the optically exited state of the hexagonal BN crystal 
(although, because of its less localised nature, not so marked as in borazine itself) 
and consideration of the configuration interaction between band-to-band excited 
configurations will bring the 'state band gap' more into line with experiment. 

Finally, Table 10 shows the valence orbital charge distribution in boron-nitride 
along with the related systems borazine and polyboronimide, obtained using the 
same set of atomic input parameters. Examination of Table 10 reveals that the 2p~ 
orbital population for boron and nitrogen atoms tends to unity as we go from 
polyboronimide to hexagonal boron nitride. This implies an increase in the 
~r-bonding ability of the boron and nitrogen atoms and, thereby, an increase in the 
zr-delocalisation as we go from polyboronimide to hexagonal boron nitride. It is 
noticeable that the hydrogen atoms of the latter two systems exert a cogent 
influence on the boron charge population, rendering the atom virtually neutral. 

Table 10. Charge distribution in 2D-hexagonal boron nitride and related systems 

Boron Nitrogen H(B) H(N) Charge 

2s 2p,~ 2p,~ 2s 2p,~ 2p,~o l s  1 s B N 
Boron 0.80 1.32 0.69 1.17 2.71 1.31 - -  - -  +0.19 - 0 . 1 9  
nitride 
Borazine 0.84 1.51 0.61 1.15 2.63 1.39 1.04 0.83 +0.04 -0 .17  
Poly- 0.86 1.51 0.55 1.16 2.60 1.45 1.02 0.85 +0.08 -0 .21  
boronimide 
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3.6. Diamond 

Diamond has the face-centred cubic structure with space group 6~,. It has two 
atoms per primitive unit cell stemming from the two interpenetrating face-centred 
cubic lattices. The lattice parameter  is 3.577/~ [43]. The first Brillouin zone for 
the face-centred cubic lattice is shown in Fig. 9. Interactions between the unit cells 
lying within a sphere of radius 10 A were taken into account. All the input data, 
including a and A, were the same as for polyethylene. Fig. 10 shows the 
commensurate mesh of 19 k-points lying in the basic domain taken for the 
construction of the density matrix. These 19 points in the basic domain result in 
256 points in the first Brillouin zone and in an error function, PE, ~ 1 0 - 6 .  

Fig. 11 shows the self-consistent band structure calculated for diamond. There 
is a general agreement between our results and the valence band structure 
calculated by Painter et al. [44] using ab initio techniques. Furthermore,  the 
calculated value of the valency band width of - 2 4 . 0  eV is in excellent agreement 
with the experimental value of 24.1 eV obtained by McFeely [38]. The only 
well-established transition in diamond seems to be that associated with the 
indirect gap: this amounts to 5.47 eV [45]. The indirect gap is found between the 
zone centre and a conduction-band minimum at kx = 0.39; ky  = 0 ;  kz = 0. Our 
calculations give the energy of the lowest electronic transition as 11.6 eV. This is 
direct and involves the F15 and F~5 states at the zone centre. Our results are very 
similar to those produced by the non-self-consistent t reatment of Pugh [46], who 
also obtained a direct interband transition between F15 and F~5 states with energy 

~ I 

r 
c 

I i i  

0 F 

Fig. 7. SCF band structure for graphite 
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Fig. 8. SCF band structure for hexagonal boron nitride 

Q 

12.6 eV. It is notable that significant contributions from the carbon 3s and 3p 
orbitals to the conduction band were found by Painter et al. [44] and these bases 
caused the conduction-band minimum to lie along the symmetry line A, consistent 
with the experimental results. We believe our basis set to be deficient to describe 
the conduction bands though adequate for the valence bands of diamond. We 
expect that the inclusion of these high-energy carbon orbitals in our calculation 
would modify the conduction band in the appropriate way. Furthermore, 
configuration interaction between the band-to-band excited configuration should 
afford a value of the band gap closer to the experimental findings. Finally, it is 
interesting that the valence orbital charge distribution, calculated from the 
valence band, shows "hybridisation" for the carbon atom as, essentially, 2s12p 3, 

Fig. 9. Brillouin zone for the face-centred cubic 
lattice 
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corresponding to the generally assumed "sp 3 hybridisation" in tetrahedral carbon 
systems. 

3. 7 Cubic Boron Nitride 

Cubic boron nitride has the sphalerite structure with the space group ~] .  We took 
the face-centred cubic lattice constant as 3.615 A [47]. The first Brillouin zone is 
the same as that of diamond (Fig. 9). All parameters were as used in the hexagonal 
boron nitride calculation. Nineteen points in the basic domain f~, giving rise to a 
total of 256 k-points in the first Brillouin zone, were taken for the construction of 
the density matrix and the resulting value of PE is -- 10 -5. 

The calculated energy band structure for cubic boron nitride is shown in Fig. 12, 
where the maximum of the valence band occurs at F, while the conduction-band 
minimum occurs along the symmetry line from F to X, with an energy 16.5 eV 
above the maximum of the valence band. A comparison of the calculated and 

( kx =0+ ky=0, kz=0 ) 

r "  

I -  . . . . . .  

,, 

~- . . . . .  -.~ . . . . .  --~-------)D K ( kx=3/8+ ky =3/8, / kz=0) 

X W---.-~ ( kx=l/2, ky =1//.,, kz=0 ) 
( kx=l/2, ky=0, kz=0) 

( kx= l /8 ,  ky= l /8 ,  k z = l / 8  ) 
A 

U=K ( kx= l /2 ,  ky=l /8,  ky=l /8)  

�9 L ( kx=l/2, ky=l/4, kz=l/4) 

Fig. 10. Commensurate mesh of 19 k-points in the representation domain for the FCC lattice 
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Table 11. Comparison of the calculated and experimental energy band gaps and the valence 
band widths for cubic boron nitride. Energy in eV 

21 

Bassani and Hemstreett Present 
Property Exptl. t t  Yoshimine* and Fung Work 

Direct gap 7.6 8.36 16.73 
Indirect band gap 6.0 • 0.05 2.9 7.6 16.53 
Valence band width 15.4 • 0.5 23.5 27.5 26.28 

?? Ref. [48] * Ref. [49] ? Ref. [50] 

X K .Z' T A 

Fig. 11. SCF band structure for diamond 
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Fig. 12. SCF band structure for cubic boron nitride 
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experimental energy band gaps and the valence band widths are shown in 
Table 11. 

Our calculated valence band width of 26.28 eV is consistent with the results of 
previous calculations, although all appear to overestimate this quantity. The 
lowest interband transition, 16.53 eV, is much higher than the observed absorp- 
tion-edge energy and, as stated earlier, we expect this to be reduced very 
substantially by a superimposed C.I. treatment. It is worth noting, however, that 
this energy lies in the same range as those for the analogous molecules H2N-BH2 
and H3N-BH3 in which the boron atom is also formally 3- and 4-coordinate 
respectively. Here  the eigenvalue gaps are 16.94 eV and 16.87 eV, respectively 
[51, 52]. 

Finally, the valence-orbital population calculated from the valence-band results 
as B(2s~ t'87) and N(2si192p 4"i6) (i.e. B+~176 thereby emphasising the 

covalent nature of the material. This is again, basically, what is found for the 
molecular analogues (Table 11) [50, 51l. 

4. Conclusion 

The semi-empirical self-consistent tight-binding method developed in this work is 
shown to produce reasonable results for the valence band structures of the solids 
studied. This allows us to apply it with some confidence to situations where an 
easily understandable picture of the chemical bonding in the unit cell is desired. 
Furthermore,  our semi-empirical self-consistent method does not involve any 
more computation than other  semi-empirical methods, such as the APW and the 
pseudo-potential methods but we believe it gives a more easily assimilable 
interpretation of the chemical bonding in solids. The band gaps do not reproduce 
observed experimental values for the optical edges but, firstly, the representation 
of the conduction band can be improved by the inclusion of the virtual orbitals in 
the basis set used for the band-structure calculations and, secondly, the cal- 
culation of optical spectra can be better  obtained by superimposing, where 
relevant, a configuration interaction scheme for the exciton-type states. 
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